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The design of multiple computer systems and computer networks 
poses some interesting new problems and shows some older problems in 
the light of a new context. We are interested in the problems which 
are related to the design of communication protocols and error recovery 
procedures. In the design of computer systems, error recovery procedures 
have often not received very much attention, although they are essential 
for the reliable operation of most systems. In the case of multiple 
computer systems, appropriate error recovery procedures can be used to 
obtain a very much increased availability of the system services. This 
is also an advantage of computer networks. Whereas single computer 
systems can sometimes function to a certain extent without elaborate 
error recovery procedures, data communication protocols, on the other 
hand, normally have to contain explicit error recovery procedures, since 
the underlying communication line is normally not very reliable. There- 
fore, approaches that have been used for the design of protocols in com- 
puter networks could also be useful in the design of local multiple com- 
puter systems for obtaining higher reliability and availability. 

One important problem in the design of communication protocols 
is the choice of an appropriate method for specifying protocols. Such a 
method should have the properties that 

(i) a p r o t o c o l  can be s p e c i f i e d  i n  a form which  i s  c o m p r e h e n s i v e ,  
i n  p a r t i c u l a r  t h a t  t h e  c o m p l e t e  d e f i n i t i o n  o f  a p r o t o c o l  can be 
p a r t i t i o n n e d  i n t o  d i f f e r e n t  l e v e l s  o f  a b s t r a c t i o n ;  

(2) t h e  s p e c i f i c a t i o n  o f  a p r o t o c o l  a l l o w s  t o  p r o v e  c e r t a i n  p r o p -  
e r t i e s  o f  t h e  p r o t o c o l  and i t s  o p e r a t i o n ,  i n  p a r t i c u l a r  t h a t  
t h e  e r r o r  r e c o v e r y  i s  e f f e c t i v e ,  and t h a t  a l l  p o s s i b l e  s i t -  
u a t i o n s  have  a c t u a l l y  been  c o n s i d e r e d ;  

(3) g i v e n  t h e  s p e c i f i c a t i o n  o f  a p r o t o c o l ,  i t s  i m p l e m e n t a t i o n  i s  
s i m p l e ,  and p a r t  o f  t h e  i m p l e m e n t a t i o n  may be  o b t a i n e d  a u t o -  
m a t i c a l l y .  
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The different situations a communication protocol has to 
cope with, are well described in [ 1 ]. In any multiple computer 
system, a realistic scheme of interprocess communications must 
foresee appropriate actions for the following situations: 

(a) Normal communicat ion  be tween  p r o c e s s e s .  

(b) O c c a s i o n a l  e r r o n e o u s  b e h a v i o r  o f  one o r  s e v e r a l  o f  t h e  
p r o c e s s e s .  This  i n c l u d e s  t h e  o c c a s i o n a l  m a l f u n c t i o n  o f  
t he  communica t ion  l i n e s .  The r e c o v e r y  p r o c e d u r e  w i l l  
n o r m a l l y  c o n s i s t  o f  t r y i n g  t h e  same a c t i o n  a g a i n .  

(c) Long r ange  e r r o n e o u s  b e h a v i o r  o r  f a i l u r e  o f  one o r  s e v e r a l  
p r o c e s s e s  o r  s u b s y s t e m s .  The r e c o v e r y  p r o c e d u r e  w i l l  n o r -  
m a l l y  c o n s i s t  o f  a r e c o n f i g u r a t i o n  o f  t h e  sys t em [ 2 ,3 ] .  

It seems that at present, there is no satisfactory method for 
specifying protocols for interprocess communication satisfying all these 
requirements. The author believes that research in this direction should 
be done from both points of view, practical as well as theoretical. The 
final objective of building multiple computer systems is a practical issue, 
but theoretical investigations on the tools to be used are important for 
understanding and solving the problems involved. Similarely as one needs 
a well-defined programming language for writing reliable programs, one 
needs a well-understood method for the specification of protocols in 
order to be able to design reliable multiple computer systems with high 
availability. In fact, the problem can be considered a special case of 
software engineering. 

We describe in the following a method for proving properties of 
protocols [ 4 ]. In particular, this method can be used to prove the 
correct operation of a given protocol. We show as an example, how this 
method applies in the case of a simple protocol for data transmission with 
recovery of transmission errors. This method applies wherever the protocol 
is specified by a finite state description of the interacting processes 
[ 5 ]. We believe that the proving method can be conveniently adapted to 
more general specification methods. 
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Finite s t a t e  description of protocols 

In the simplest case, we consider a system of two subsystems 
which communicate via a communication line. Each subsystem can be 
described in terms of a finite number of states and transitions 
between these states. The transitions are associates either with a 
particular local action of the subsystem or with the communication 
line between the two. We suppose that the two systems communicate 
by exchanging messages of a certain type, and that transmission 
errors will be detected by a lower level line control, not described 
here, which indicates an error reception whenever an ill-formed mes- 
sage is received. Then the possible transitions between two states 
of a subsystem are: 

i. local action transitions, written where ~ represents 
the associated action, performed during the transition. 

" m " 
2. sending transitions, written : > where m is the message 

send over the communication line. 

" m " 
3 .  receiving transitions, written ---~ where m is the message 

(correctly) received, or -~ indicating the reception of an 
ill-formed message. 

• As an example we consider the data transmission protocol with 
alternation bit described in [ 6 ]. We consider data transmission from 
subsystem A to subsystem B only, and can describe the whole system 
by the following state diagrams: 
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We note that the actions N and U are filling the data buffer 
of subsystem A with new data, and using the data in the buffer of sub- 
system B respectively, and that the correct reception of one of the 
messages Do or D 1 by system B implies that the content of the data 

buffer of system A has been copied into the data buffer of system B . 

S y n c h r o n i z a t i o n  and a d j o i n t  states 

Synchronizing several subsystems or processes means introducing 
a correlation in the time sequence of the execution of their respective 
actions such that certain global requirements are satisfied. In order 
to verify whether these global requirements are satisfied for a particular 
system of interacting subsystems, one can consider the possible combinations 
of states in which the subsystems can be at any instant of the execution 
[ 5 ]. In [ 4 ] we show for the case of two communicating subsystems A 
and B, how one can determine the set A of states in which B could 

s 
possibly be at the time when subsystem A is in the state s We call 
A the set of adjoint states of s The smaller the sets of adjoint 
s 

s t a t e s  a r e ,  t h e  c l o s e r  i s  t he  s y n c h r o n i z a t i o n  be tween  t h e  two s u b s y s t e m s .  
I f  f o r  some s t a t e  s o f  A t he  s e t  o f  a d j o i n t  s t a t e s  i s  t h e  s e t  o f  a l l  
s t a t e s  o f  s u b s y s t e m  B t h e n  s y s t e m  A does no t  know a n y t h i n g  a b o u t  s y s t e m  
B, when i t  i s  in  t h e  s t a t e  s ( t he  s y n c h r o n i z a t i o n  i s  l o s t ) .  

For the example above we obtain the following sets of adjoint states: 

A 1 = {I} A S = {5} 

A 2 = {I} A 6 = {5} 

A 3 = { 2 , 3 , 8 , 4 }  A 7 = { 6 , 7 , 1 , 8 }  

A 4 = {5,1} A 8 = {1,5} 

This means, for instance, that subsystem B must be in its state 
1 when subsystem A is in its state i, or that subsystem B could be in 
one of the states 2,3,8, or 4 when subsystem A is in its state 3 . 

In t h i s - e x a m p l e ,  t he  above s e t s  o f  a d j o i n t  s t a t e  a r e  a s t a b l e  
s o l u t i o n  f o r  t h e  w h o l e  s y s t e m ,  i n d e p e n d e n t  o f  t he  q u e s t i o n  o f  i n i t i a l  
s y n c h r o n i z a t i o n .  This  means t h a t  t h i s  p r o t o c o l  e s t a b l i s h e s  s y n c h r o n i z a -  
t i o n  even i f  i n i t i a l l y ,  t h e r e  was none.  
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Analysis of action sequences 

In order to prove the correct operation of a protocol which 
describes the communication of several processes we consider the set 
of all possible action sequences (also called computation sequences) 
which can be obtained by the protocol, and ask whether this set cor- 
responds to what we intend the protocol to do. The notion of action 
sequences has been used to compare different models of parallel com- 
putation [ 7 ]. An extension of regular expressions for action se- 
quences has been used to describe synchronization requirements for 
operating systems [ 8 ]. Since we are here concerned with protocols 
which are described in terms of finite state machines, we can describe 
the action sequences in terms of regular expressions. 

For  a g i v e n  p r o t o c o l ,  t h e  a c t i o n s  which  we i n c l u d e  i n  t h e  
a n a l y s i s  o f  t h e  a c t i o n  s e q u e n c e s  a r e  t h o s e  which  a r e  r e l e v a n t  f o r  
t h e  c o r r e c t n e s s  p r o o f  o f  t h e  p r o t o c o l .  These  may i n c l u d e  l o c a l  ac -  
t i o n s  o f  s u b s y s t e m s ,  as w e l l  as  t h e  a c t i o n s  o f  s e n d i n g  o r  r e c e i v i n g  
m e s s a g e s .  In  t h e  c a s e  o f  t h e  above  example ,  we want  t o  p r o v e  t h e  c o r -  
r e c t  t r a n s m i s s i o n  o f  d a t a .  One s e e s  t h a t  t h e  a c t i o n  s e q u e n c e  NDU 
(where D s t a n d s  f o r  t h e  c o r r e c t  r e c e p t i o n  o f  a d a t a  message  by t h e  
subsystem B, i.e. transition Do or Di) implies the correct trans- 

mission of one block Of data. In order to prove the correctness of 
the protocol, it would therefore be sufficient to prove that the pos- 
sible action sequences are described by the regular expression (NDU) , 
where (...) stands for an indefinite repetition of the enclosed expres- 
sion. But we note that (NDD*UD*) would be sufficient, too. 

Given  t h e  s p e c i f i c a t i o n  o f  a c o m m u n i c a t i o n  p r o t o c o l  i n  t e rms  o f  
a f i n i t e  s t a t e  d e s c r i p t i o n ,  as  d i s c u s s e d  above ,  one  can d e t e r m i n e  t h e  
s e t  o f  p o s s i b l e  a c t i o n  s e q u e n c e s  t h e  p r o t o c o l  can  g i v e  r i s e  t o  [ 4 ] .  
In  t h e  c a s e  o f  t h e  example  above ,  w i t h  i n i t i a l i z a t i o n  o f  b o t h  s u b s y s t e m s  
i n  t h e  s t a t e s  1, we o b t a i n  t h e  e x p r e s s i o n  

(NDUD*) ~ 

f o r  t h e  p o s s i b l e  a c t i o n  s e q u e n c e s .  T h i s  means t h a t  any  a c t i o n  s e q u e n c e  
t h a t  c o u l d  o c c u r  c o n s i s t  o f  t h e  i n d e f i n i t e  r e p e t i t i o n  o f  s e q u e n c e s  o f  t h e  
fo rm N,D,U, f o l l o w e d  p o s s i b l y  by one o r  more a c t i o n s  D . Th i s  e x p r e s s i o n  
does  n o t  c o n t a i n  symbols  which  r e p r e s e n t  t h e  a%t ions  o f  r e t r a n s m i t t i n g  t h e  
m e s s a g e s  0 o r  1 , o r  o f  r e c e i v i n g  an i l l - f o r m e d  m e s s a g e ;  t h o s e  a c t i o n s  
a r e  n o t  e x p l i c i t e l y  i n c l u d e d  i n  t h e  a c t i o n  s e q u e n c e s .  The above e x p r e s s i o n  
t h e n  p r o v e s  t h e  c o r r e c t n e s s  o f  t h e  p r o t o c o l  as d i s c u s s e d  above .  I t  a l s o  
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proves that there is no deadlock. (Note that we have ignored the 
problem of a message which is completely lost. This problem can be 
solved by a time-out mechanism in one of the subsystems, which results 
in an error transition.) 

Another example is the protocol for data transmission given 
in reference [ 9 ]. This protocol is not correct because it falls 
into a loop as soon as an acknowledge message is received erroneously 
by subsystem A This fact is reflected in the regular expression 
one obtains [ 4 ] for the action sequences: 

NDU (NDU)* D ~° 

which means that a typical action sequence consists of a certain number 
of correct data block transmissions followed by an indefinite sequence 
of D . In deriving this expression, one finds immediately that this 
indefinite sequence of D is the result of looping between certain 
states. 

We are presently working on applying a similar proof method to 
more complex communication protocols, of the kind used in the Arpa network. 
We also investigate if the concept of path expressions [ 8 ] can be useful 
as a tool for describing communication protocols. Certainly, more work has 
to be done in this area, in order to obtain convenient protocol description 
methods and other tools for designing multiple computer systems with high 
reliability and availability. 
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