
Communication Proto.cols and Error Recovery Procedures*

by

Gregor V. Bochmann
D4partement d'Informatique

Universitg de Montr4al

The design of multiple computer systems and computer networks
poses some interesting new problems and shows some older problems in
the light of a new context. We are interested in the problems which
are related to the design of communication protocols and error recovery
procedures. In the design of computer systems, error recovery procedures
have often not received very much attention, although they are essential
for the reliable operation of most systems. In the case of multiple
computer systems, appropriate error recovery procedures can be used to
obtain a very much increased availability of the system services. This
is also an advantage of computer networks. Whereas single computer
systems can sometimes function to a certain extent without elaborate
error recovery procedures, data communication protocols, on the other
hand, normally have to contain explicit error recovery procedures, since
the underlying communication line is normally not very reliable. There-
fore, approaches that have been used for the design of protocols in com-
puter networks could also be useful in the design of local multiple com-
puter systems for obtaining higher reliability and availability.

One important problem in the design of communication protocols
is the choice of an appropriate method for specifying protocols. Such a
method should have the properties that

(i) a p r o t o c o l can be s p e c i f i e d i n a form which i s c o m p r e h e n s i v e ,
i n p a r t i c u l a r t h a t t h e c o m p l e t e d e f i n i t i o n o f a p r o t o c o l can be
p a r t i t i o n n e d i n t o d i f f e r e n t l e v e l s o f a b s t r a c t i o n ;

(2) t h e s p e c i f i c a t i o n o f a p r o t o c o l a l l o w s t o p r o v e c e r t a i n p r o p -
e r t i e s o f t h e p r o t o c o l and i t s o p e r a t i o n , i n p a r t i c u l a r t h a t
t h e e r r o r r e c o v e r y i s e f f e c t i v e , and t h a t a l l p o s s i b l e s i t -
u a t i o n s have a c t u a l l y been c o n s i d e r e d ;

(3) g i v e n t h e s p e c i f i c a t i o n o f a p r o t o c o l , i t s i m p l e m e n t a t i o n i s
s i m p l e , and p a r t o f t h e i m p l e m e n t a t i o n may be o b t a i n e d a u t o -
m a t i c a l l y .

* Work supported in p a r t by the N a t i o n a l Research Counci l o f Canada.

- 45-

The different situations a communication protocol has to
cope with, are well described in [1]. In any multiple computer
system, a realistic scheme of interprocess communications must
foresee appropriate actions for the following situations:

(a) Normal communicat ion be tween p r o c e s s e s .

(b) O c c a s i o n a l e r r o n e o u s b e h a v i o r o f one o r s e v e r a l o f t h e
p r o c e s s e s . This i n c l u d e s t h e o c c a s i o n a l m a l f u n c t i o n o f
t he communica t ion l i n e s . The r e c o v e r y p r o c e d u r e w i l l
n o r m a l l y c o n s i s t o f t r y i n g t h e same a c t i o n a g a i n .

(c) Long r ange e r r o n e o u s b e h a v i o r o r f a i l u r e o f one o r s e v e r a l
p r o c e s s e s o r s u b s y s t e m s . The r e c o v e r y p r o c e d u r e w i l l n o r -
m a l l y c o n s i s t o f a r e c o n f i g u r a t i o n o f t h e sys t em [2 ,3] .

It seems that at present, there is no satisfactory method for
specifying protocols for interprocess communication satisfying all these
requirements. The author believes that research in this direction should
be done from both points of view, practical as well as theoretical. The
final objective of building multiple computer systems is a practical issue,
but theoretical investigations on the tools to be used are important for
understanding and solving the problems involved. Similarely as one needs
a well-defined programming language for writing reliable programs, one
needs a well-understood method for the specification of protocols in
order to be able to design reliable multiple computer systems with high
availability. In fact, the problem can be considered a special case of
software engineering.

We describe in the following a method for proving properties of
protocols [4]. In particular, this method can be used to prove the
correct operation of a given protocol. We show as an example, how this
method applies in the case of a simple protocol for data transmission with
recovery of transmission errors. This method applies wherever the protocol
is specified by a finite state description of the interacting processes
[5]. We believe that the proving method can be conveniently adapted to
more general specification methods.

- 46 -

Finite s t a t e description of protocols

In the simplest case, we consider a system of two subsystems
which communicate via a communication line. Each subsystem can be
described in terms of a finite number of states and transitions
between these states. The transitions are associates either with a
particular local action of the subsystem or with the communication
line between the two. We suppose that the two systems communicate
by exchanging messages of a certain type, and that transmission
errors will be detected by a lower level line control, not described
here, which indicates an error reception whenever an ill-formed mes-
sage is received. Then the possible transitions between two states
of a subsystem are:

i. local action transitions, written where ~ represents
the associated action, performed during the transition.

" m "
2. sending transitions, written : > where m is the message

send over the communication line.

" m "
3 . receiving transitions, written ---~ where m is the message

(correctly) received, or -~ indicating the reception of an
ill-formed message.

• As an example we consider the data transmission protocol with
alternation bit described in [6]. We consider data transmission from
subsystem A to subsystem B only, and can describe the whole system
by the following state diagrams:

®

<b
D o

e,1 D0 '

D 1 ~ e,0

D 1

k t P 1

DO -- ' ~

e,D _

Subsystem A
- 4 7 -

Subsystem B

We note that the actions N and U are filling the data buffer
of subsystem A with new data, and using the data in the buffer of sub-
system B respectively, and that the correct reception of one of the
messages Do or D 1 by system B implies that the content of the data

buffer of system A has been copied into the data buffer of system B .

S y n c h r o n i z a t i o n and a d j o i n t states

Synchronizing several subsystems or processes means introducing
a correlation in the time sequence of the execution of their respective
actions such that certain global requirements are satisfied. In order
to verify whether these global requirements are satisfied for a particular
system of interacting subsystems, one can consider the possible combinations
of states in which the subsystems can be at any instant of the execution
[5]. In [4] we show for the case of two communicating subsystems A
and B, how one can determine the set A of states in which B could

s
possibly be at the time when subsystem A is in the state s We call
A the set of adjoint states of s The smaller the sets of adjoint
s

s t a t e s a r e , t h e c l o s e r i s t he s y n c h r o n i z a t i o n be tween t h e two s u b s y s t e m s .
I f f o r some s t a t e s o f A t he s e t o f a d j o i n t s t a t e s i s t h e s e t o f a l l
s t a t e s o f s u b s y s t e m B t h e n s y s t e m A does no t know a n y t h i n g a b o u t s y s t e m
B, when i t i s in t h e s t a t e s (t he s y n c h r o n i z a t i o n i s l o s t) .

For the example above we obtain the following sets of adjoint states:

A 1 = {I} A S = {5}

A 2 = {I} A 6 = {5}

A 3 = { 2 , 3 , 8 , 4 } A 7 = { 6 , 7 , 1 , 8 }

A 4 = {5,1} A 8 = {1,5}

This means, for instance, that subsystem B must be in its state
1 when subsystem A is in its state i, or that subsystem B could be in
one of the states 2,3,8, or 4 when subsystem A is in its state 3 .

In t h i s - e x a m p l e , t he above s e t s o f a d j o i n t s t a t e a r e a s t a b l e
s o l u t i o n f o r t h e w h o l e s y s t e m , i n d e p e n d e n t o f t he q u e s t i o n o f i n i t i a l
s y n c h r o n i z a t i o n . This means t h a t t h i s p r o t o c o l e s t a b l i s h e s s y n c h r o n i z a -
t i o n even i f i n i t i a l l y , t h e r e was none.

- 48-

Analysis of action sequences

In order to prove the correct operation of a protocol which
describes the communication of several processes we consider the set
of all possible action sequences (also called computation sequences)
which can be obtained by the protocol, and ask whether this set cor-
responds to what we intend the protocol to do. The notion of action
sequences has been used to compare different models of parallel com-
putation [7]. An extension of regular expressions for action se-
quences has been used to describe synchronization requirements for
operating systems [8]. Since we are here concerned with protocols
which are described in terms of finite state machines, we can describe
the action sequences in terms of regular expressions.

For a g i v e n p r o t o c o l , t h e a c t i o n s which we i n c l u d e i n t h e
a n a l y s i s o f t h e a c t i o n s e q u e n c e s a r e t h o s e which a r e r e l e v a n t f o r
t h e c o r r e c t n e s s p r o o f o f t h e p r o t o c o l . These may i n c l u d e l o c a l ac -
t i o n s o f s u b s y s t e m s , as w e l l as t h e a c t i o n s o f s e n d i n g o r r e c e i v i n g
m e s s a g e s . In t h e c a s e o f t h e above example , we want t o p r o v e t h e c o r -
r e c t t r a n s m i s s i o n o f d a t a . One s e e s t h a t t h e a c t i o n s e q u e n c e NDU
(where D s t a n d s f o r t h e c o r r e c t r e c e p t i o n o f a d a t a message by t h e
subsystem B, i.e. transition Do or Di) implies the correct trans-

mission of one block Of data. In order to prove the correctness of
the protocol, it would therefore be sufficient to prove that the pos-
sible action sequences are described by the regular expression (NDU) ,
where (...) stands for an indefinite repetition of the enclosed expres-
sion. But we note that (NDD*UD*) would be sufficient, too.

Given t h e s p e c i f i c a t i o n o f a c o m m u n i c a t i o n p r o t o c o l i n t e rms o f
a f i n i t e s t a t e d e s c r i p t i o n , as d i s c u s s e d above , one can d e t e r m i n e t h e
s e t o f p o s s i b l e a c t i o n s e q u e n c e s t h e p r o t o c o l can g i v e r i s e t o [4] .
In t h e c a s e o f t h e example above , w i t h i n i t i a l i z a t i o n o f b o t h s u b s y s t e m s
i n t h e s t a t e s 1, we o b t a i n t h e e x p r e s s i o n

(NDUD*) ~

f o r t h e p o s s i b l e a c t i o n s e q u e n c e s . T h i s means t h a t any a c t i o n s e q u e n c e
t h a t c o u l d o c c u r c o n s i s t o f t h e i n d e f i n i t e r e p e t i t i o n o f s e q u e n c e s o f t h e
fo rm N,D,U, f o l l o w e d p o s s i b l y by one o r more a c t i o n s D . Th i s e x p r e s s i o n
does n o t c o n t a i n symbols which r e p r e s e n t t h e a%t ions o f r e t r a n s m i t t i n g t h e
m e s s a g e s 0 o r 1 , o r o f r e c e i v i n g an i l l - f o r m e d m e s s a g e ; t h o s e a c t i o n s
a r e n o t e x p l i c i t e l y i n c l u d e d i n t h e a c t i o n s e q u e n c e s . The above e x p r e s s i o n
t h e n p r o v e s t h e c o r r e c t n e s s o f t h e p r o t o c o l as d i s c u s s e d above . I t a l s o

- 4 9 -

proves that there is no deadlock. (Note that we have ignored the
problem of a message which is completely lost. This problem can be
solved by a time-out mechanism in one of the subsystems, which results
in an error transition.)

Another example is the protocol for data transmission given
in reference [9]. This protocol is not correct because it falls
into a loop as soon as an acknowledge message is received erroneously
by subsystem A This fact is reflected in the regular expression
one obtains [4] for the action sequences:

NDU (NDU)* D ~°

which means that a typical action sequence consists of a certain number
of correct data block transmissions followed by an indefinite sequence
of D . In deriving this expression, one finds immediately that this
indefinite sequence of D is the result of looping between certain
states.

We are presently working on applying a similar proof method to
more complex communication protocols, of the kind used in the Arpa network.
We also investigate if the concept of path expressions [8] can be useful
as a tool for describing communication protocols. Certainly, more work has
to be done in this area, in order to obtain convenient protocol description
methods and other tools for designing multiple computer systems with high
reliability and availability.

References

i. L. Pouzin, Network protocols, Nato International Advanced Study
Institute, Brighton, Sept. 1973.

2. R.S. Fabry, Dynamic verification of operating system decisions,
Comm. ACM 16, 659 (1973).

3. "Resource sharing computer networks", Special session at the SJCC,
Atlantic City, 1970.

4. G.V. Bochmann, On proving protocols correct, Technical report,
September 1974.

5. P. Gilbert and W.J. Chandler, Interference between Communicating
parallel processes, Comm. ACM 15, 427 (1972).

6. K.A. Bartlett, R.A. Scantlebury and P.T. Wilkinson, A note on
reliable lull-duplex transmission over half-duplex links, Comm.
ACM 12, 260 (1969).

7. J.L. Peterson and T.H. Bredt, A comparison of models of parallel
computation, Proceedings IFIP Congress 74, p. 466-470 (1974).

8. R.H. Campbell and A.N. Habermann, The specification of process
synchronization by path expressions, Techn. Report # 55, Univ of
Newcastle upon Tyne, Jan 1974.

9. J.P. Gray, Line control procedures, Proc. IEEE, Nov 1972, p. 1307.

- 50 -

